skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nieman, Reed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 19, 2026
  2. ABSTRACT Multi‐copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio‐electrochemical applications. This study employs time‐dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three‐coordinate models and 1 four‐coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination. Calculations using ωB97X‐D3 functional, def2‐TZVP basis set, and conductor‐like polarizable continuum model (CPCM) solvation model reproduced key experimental spectral features, with increased model complexity improving agreement, particularly for the ~400 cm−1band splitting in resonance Raman spectra. This work enhances our understanding of T1 copper sites' electronic properties and spectra, bridging the gap between simplified models and complex proteins. The findings contribute to the interpretation of spectroscopic data in blue copper proteins and may inform future studies on similar biological systems. 
    more » « less
    Free, publicly-accessible full text available January 5, 2026
  3. Abstract This study explores open-shell biradical and polyradical molecular compounds based on extended multireference (MR) methods (MR-configuration interaction with singles and doubles (CISD) and MR-averaged quadratic coupled cluster (AQCC) approach) using the numbers of unpaired densitiesNU. These results were used to guide the analysis of the fractional occupation number weighted density (FOD) calculated within the finite temperature (FT) density functional theory (DFT) approach. As critical test examples, the dissociation of carbon–carbon (CC) single, double and triple bonds and a benchmark set of polycyclic aromatic hydrocarbons (PAHs) have been chosen. By examining single, double, and triple bond dissociations, we demonstrate the utility and accuracy but also limitations of the FOD analysis for describing these dissociation processes. In significant extension of previous work (Phys Chem Chem Phys 25: 27380–27393), the assessment of FOD applications for different classes of DFT functionals was performed examining the range-separated functionals ωB97XD, ωB97M-V, CAM-B3LYP, LC-ωPBE, and MN12-SX, the hybrid (M06-2X) functional and the double hybrid (B2P-LYP) functional. In all cases, strong correlations betweenNFODandNUvalues are found. The major task was to develop a new linear regression formula for range-separated functionals allowing a convenient determination of the optimal electronic temperatureTelfor the FT-DFT calculation. We also established an optimal temperature for the semiempirical extended tight-binding GFN2-xTB method. These findings significantly broaden the applicability of FOD analysis across various DFT functionals and semiempirical methods. 
    more » « less
  4. This study explores open shell biradical and polyradical molecular compounds based on extended multireference (MR) methods (MR-configuration interaction with singles and doubles (CISD) and MR-averaged quadratic coupled cluster (AQCC) approach) using the numbers of unpaired densities NU. These results were used to guide the analysis of the fractional occupation number weighted density (FOD) calculated within the finite temperature (FT) density functional theory (DFT) approach. As critical test examples, the dissociation of carbon-carbon (CC) single, double and triple bonds, and a benchmark set of polycyclic aromatic hydrocarbons (PAHs) has been chosen. By examining single, double, and triple bond dissociations, we demonstrate the utility and accuracy but also limitations of the FOD analysis for describing these dissociation processes. In significant extension of previous work (Phys Chem Chem Phys 25: 27380-27393) the assessment of FOD applications for different classes of DFT functionals was performed examining the range-separated functionals ωB97XD, ωB97M-V, CAM-B3LYP, LC-ωPBE, and MN12-SX, the hybrid (M06-2X) functional and the double hybrid (B2P-LYP) functional. In all cases, strong correlations between NFOD and NU values are found. The major task was to develop a new linear regression formula for range-separated functionals allowing a convenient determination of the optimal electronic temperature Tel for the FT-DFT calculation. We also established an optimal temperature for the semi-empirical extended tight-binding GFN2-xTB method. These findings significantly broaden the applicability of FOD analysis across various DFT functionals and semi-empirical methods. 
    more » « less
  5. Free, publicly-accessible full text available July 17, 2026
  6. Molecular π-magnets based on single organic molecules have attracted increasing attention for their potential applications in optoelectronics and spintronics. Global aromaticity in conjugated macrocyclic polyradicaloids is still an open question that has only been tackled in molecules with an even number of electrons. Here, we report the on-surface synthesis of a cyclopenta-ringfused oligo(m-phenylene) macrocycle, 9MC, with an odd number of electrons. The generated polyradicaloid undergoes a surface-induced distortion to a D3h symmetry with a fully delocalized doublet ground state. Interestingly, 9MC exhibits two aromatic annulene-within-an-annulene (AWA) ring currents in the inner and outer rings. 
    more » « less
  7. The nonplanar character of graphene with a single carbon vacancy defect (SV) is investigated utilizing a pyrene-SV model system by way of complete active space self-consistent field theory (CASSCF) and multi-reference configuration interaction singles and doubles (MRCISD) calculations. Planar structures were optimized with both methods showing the 3B1 state as the ground state with three energetically close states within an energy range of 1 eV. These planar structures constitute saddle-points. However, upon following the out-of-plane imaginary frequency yields more stable (by 0.22 to 0.53 eV), but non-planar structures of CS symmetry. Of these, the 1A’ structure is the lowest in energy and is strongly deformed into an L-shape. Following a further out-of-plane imaginary frequency in the non-planar structures leads to the most stable, but most deformed singlet structure of C1 symmetry. In this structure a bond is formed between the carbon atom with the dangling bond and a carbon of the cyclopentadienyl ring. This bond stabilizes the structure by more than 3 eV compared to the planar 3B1 structure. Higher excited states were calculated at MR-CISD level showing a grouping of four states low in energy and higher states starting around 3 eV. 
    more » « less
  8. The biradicaloid character of different types of polycyclic aromatic hydrocarbons (PAHs) based on small band gaps is an important descriptor to assess their opto-electronic properties. 
    more » « less
  9. The effect of water on gold-supported chiral graphene nanoribbons has been studied. The results show a spontaneous hydrogenation of the ribbons with a well-defined periodic pattern, even at room temperature and with no other external activation. 
    more » « less